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Recent progress in the development of vortex methods and their applications to the 
numerical simulation of incompressible fluid flows are reviewed. Emphasis is on recent results 
concerning the accuracy of these methods, improvements in computational efficiency, and the 
development of three-dimensional methods. Simulations of several example flows which 
display some of the strengths and weaknesses of vortex methods are presented. 

1. INTRODUCTION 

Many incompressible flows at high Reynolds numbers are characterized by regions 
of concentrated vorticity imbedded in irrotational fluid. By the theorems of 
Helmholtz and Kelvin we know that the inviscid motion of the vorticity in these 
regions is given by the local fluid velocity which in turn is determined kinematically 
from the vorticity field. Thus, it is mathematically correct and often very convenient 
to consider inviscid fluid dynamics in terms of parcels of vorticity which induce 
motion on each other as an alternative to pressure-velocity considerations. By this 
mutual induction process a vortex ring propels itself along its axis and a pair of 
aircraft-trailing vortices induce downward motion, each upon the other. Vortex 
methods simulate flows of this type by discretizing the vorticity-containing regions 
and tracking this discretization in a Lagrangian reference frame. The required local 
velocities are computed as the solution to a Poisson equation for the velocity field, 
often in terms of a Green’s function or Biot-Savart integration. Typically, the 
Lagrangian coordinates of this discretization satisfy a nonlinear system of ordinary 
differential equations giving the time evolution of the coordinates. 

Recent progress in the development of vortex methods with particular emphasis on 
improvements in accuracy and computational efftciency and on the development of 
three-dimensional methods and their application is reviewed in this paper. Other 
recent review articles on vortex methods [l-4] provide excellent background on the 
historical development of the method and its application to two-dimensional 
problems, especially the roll-up of a vortex sheet and flow past bluff bodies. This 
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paper primarily discusses the results and applications that provide insight into the 
strengths and weaknesses of vortex methods. 

The plan of this paper is as follows. In Section 2 the point vortex and vortex blob 
methods for two-dimensional flows are presented. Several recent results are discussed 
concerning the numerical analysis of the latter scheme, e.g., the preservation of 
globally conserved quantities and the analysis of the spatial discretization error 
resulting from the convection of fixed blobs of vorticity. An application to the two- 
dimensional mixing layer is briefly described. The contour dynamics method is also 
discussed in this section. This method is a generalization of the “water-bag” model 
used to study plasma dynamics and is fairly new in its application to fluid dynamics. 
The method has therefore not had a long time to mature, but it has a number of 
interesting features that deserve consideration in this paper. 

In Section 3 the simulation of three-dimensional flows with vortex methods is 
discussed. Here a natural way to represent the vorticity is in the form of closed tubes 
or filaments of vorticity, although other schemes are under investigation. Applications 
to aircraft-trailing vortices and to a turbulent spot in a laminar boundary layer are 
presented. Hybrid schemes that use an Eulerian mesh to solve the Poisson equation 
for the velocity field are discussed in Section 4. The goal of these schemes is to avoid 
the high cost of the Biot-Savart integration if many vortex elements are used while 
enjoying most of the advantages of pure Lagrangian schemes. 

2. TWO-DIMENSIONAL SIMULATIONS 

A. Point Vortex Method 

Apparently the first attempt to simulate a flow by a vortex method was by 
Rosenhead [5], who in 1931 approximated the motion of a two-dimensional vortex 
sheet by following the movement in time of a system of point vortices. Thus, the 
vorticity originally concentrated along a line in two dimensions (vortex sheet) was 
concentrated even further into a finite number of point vortices for simulation 
purposes. In this point vortex method the scalar vorticity field o has the represen- 
tation 

0(x, t) = 5 riqx - x,(t)], 
i=l 

where 6 is the two-dimensional Dirac delta function, xi = (xi, ui) are the locations of 
the N vortices, and the ri are their respective circulations. In general, the circulation 
of region 5P is defined by 

l-#= I w dx. (2) 73’ 
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To satisfy the inviscid vorticity transport equation, 

$+(u. V)w=O, 

Of 

DW 
- 0, 

Dt- 

the velocity of each vortex must be given by the value of the velocity field at its 
present location, 

dx. 
-2 = U(Xi, t). 
dt 

The velocity field is computed as the solution to the Poisson equation 

v*u = -v x (WC?,), (ha) . 

where e^, is the unit vector in the z-direction and the boundary condition at a solid 
surface with unit normal n is 

” n/sum = 0. (6b) 
If the two-dimensional flow field has’no interior boundaries and the fluid is at rest at 
infinity, the solution to (6) may be written as the Biot-Savart integral, 

1 
u(x, t) = - 271 

I 
(x - x’) x &zo(x’, t) dx’ 

(x-x’[* * (7) 

Using the representation (1) in (7) we find that the xi are the solution to the following 
system of 2N nonlinear ODE’s: 

dxi 
dt 

--& 21: (‘j~~-Jx~,~. (8) 
J- 1 I J 
i+i 

Rosenhead’s calculations were done by hand. With the advent of computers, 
further attempts were made to achieve “better” results by following more point 
vortices with more accurate time integration schemes (see e.g., Birkhoff and Fisher 
[6]). In many cases the vortices achieved a chaotic state of motion. It now appears 
that using an increased number of point vortices of decreased strength will not yield a 
converged solution. Point vortices are simply too singular. (In fact the original 
problem that Rosenhead attempted to study-the dynamics of a vortex sheet-is ill 
posed [7] in the sense that nonsmooth solutions will develop in finite time for 
arbitrarily small initial disturbances.) 
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Thus, although the point vortex method faithfully solves the Euler (inviscid) 
equations, a system of point vortices may do a poor job of representing a physically 
interesting vorticity field. Ironically, best results with the point vortex method often 
are achieved by using only a few vortices with a diffusive time integration scheme. 

B. Vortex Blob Method 

More recently, many investigators have used vortices with finite cores or vortex 
blobs in their simulations 18, 91. The vorticity field is now represented by 

0(x, t) = x riyi[x -x,(t)\, i I (9) 

where yi is the vorticity distribution within the vortex located at xi with the nor- 
malization 

_1 yi(x) dx = 1. (10) 

We assume that the differences in the distributions between the vortices depend only 
on a parameter cri, i.e., yi is given by 

YiCx - xi> = C1lcrZ) f(lx -Xil/ai)~ (11) 

where the shape or distribution function f is common to all vortex elements. The 
quantity ui is clearly a measure of the spread or core size of the vortex. For example, 
the calculation of the dispersion (x2) defined by 

(X2> = f 1x1’ Y,(X) dx (12) 

yields 

(x2)=o;2~jmf(y)y3dy. (13) 
0 

We will refer to ui as the core of vortex element i. The velocity induced by the 
vorticity field (9) is given by 

u(x, t) = - - 1 
2’, ,: (X - xj) X e^zrj g(lx - xjl/Oj> 

J-1 
Ix -xii2 ’ 

where g is given by 

(14) 

g(y) = 27t [’ f(z)z dz. 
-0 

(15) 
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Thus, the use of distributed vortex cores or vortex blobs yields more realistic vorticity 
distributions and bounded induced velocities for all the vortex elements. 

A number of core distribution functions have been employed. For example, the 
Gaussian distribution 

y(x) = $exp~-lx121~2~ 

can be used to satisfy identically the viscous part of the vorticity transport equation 
for a viscous fluid, i.e., the right-hand side of 

where v is the kinematic viscosity. To do so requires that u2 grow linearly in time as 

da= 
-=4v. 
dt 

Chorin [S ] has employed a y with the behavior 

to obtain a constant induced velocity within the core, a property which is of some 
benefit for boundary-layer simulations. Hald [lo] and Leonard [ 111 have shown that 
using y containing both signs of vorticity can increase the spatial order of accuracy. 
We will return to this point later. 

The velocity of these blobs must also be specified. Most studies have used the 
following, referred to here as scheme A: 

dx. 
2 = U(Xi, t) 
dt 

1 ;, (Xi - Xj) x e,r, g(lx; - Xjl/Uj) 

= 271 j’Ii 1xi-xjt2 ’ (20) 

i.e., the velocity field evaluated at the center of the blob. Also of some merit is the 
scheme-referred to here as scheme B-using the vorticity-weighted average of the 
velocity over the blob, 

dxi 
dt - i 

yi(xi - x’) u(x’, t) dx’ 

1 

= 
-- \“; (Xi - Xj) X e^,rjm(lxi - ‘.jlY ‘jr ‘j) 

2n ,,y, jxi-xi12 ’ (21) 
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where m is defined by 

m(l xi - xj19 ui, uj) 

~(2n)2(~~axY~(x)f(Y)~(lXi~xjl~uiX)ujY)dXdY 

0 0 

and j is given by 

j(z, 3, t) = 1, s+t<z, 

1 s* + t* - z* 
= -cos 

-1 

7t ( 2st 1 
, Is-tl<z<s+t, 

= 0, z < Is - t(. 

C. Spatial Accuracy 

As mentioned above, the point vortex method, neglecting time integration errors, 
satisfies the inviscid equations of motion exactly. We now consider the spatial 
accuracy of the vortex blob technique. In this case error arises because the 
computational elements are assumed to retain the same shape for all time even 
though a real fluid element carrying this vorticity may suffer considerable strain, as 
illustrated in Fig. 1. 

One measure of accuracy of a numerical method is its ability to satisfy integral 
constraints on the fluid motion. In two-dimensional flows at rest at infinity and with 
no interior boundaries, the following integrals are invariants of the motion, inviscid or 
viscous: 

I w dx = const., (22) 

c xx&,wdx=const. (23) 

t = t, t = t.J 

FLUID WITHIN 
CORE AT t = t, 

VORTEX CORES 

FIG. 1. Schematic showing constancy of shape of a computational element versus distortion of 
actual fluid element. 
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Equations (22) and (23) express, respectively, the conservation of total circulation 
and linear impulse. Three additional constraints for inviscid motion are 

i x x x x e^,w dx = const. (24) 

.II w(x) w(x’) log ( x - x’ ] dx dx’ = const. (25) 

!” f(w) dx = const. 

(f arbitrary), 

(26) 

where (24) expresses conservation of angular impulse, (25) is related to the total 
kinetic energy, and (26) is a consequence of the fact that the vorticity of each fluid 
particle is constant and the flow is incompressible. It can be shown easily that 
scheme B satisfies the first three invariants [ Ill. In general, scheme A will satisfy the 
first three invariants only if ui = u for all i. Otherwise the simple modification 

g(JXi - XjI/Uj) +g(lxj - xjl/<("f + ui'>/2)"') 

in Eq (20) for dxJdf will ensure that the three invariants (22) to (24) are satisfied. 
Only scheme B satisfies the energy invariant. Neither scheme will satisfy (26) in 
general. The consequences of not satisfying the energy constraint are not known. 
Usually one is looking for some dissipation anyway so that energy conservation for 
the convective motion is not vital unless, of course, a numerical instability results. 

Hald and Del Prete [ 121 studied the convergence of the vortex blob method to the 
solution of the Euler equations. They were able to show convergence but for only a 
limited time interval with an error that grows exponentially in time. Later Hald [lo] 
found an improved proof of convergence in which the error remains independent of 
time. We will return to Hald’s results after a brief discussion of the local spatial trun- 
cation error of the method. 

The vortex blob method as described above is equivalent to approximating the 
convective derivative by 

(u v>w = v (uu) !z v [ 2 TiYi(X - Xi) 221 . 
i=l 

(27) 

This may be verified by noting that the right-hand side of (27) is equal to -au/at 
with w given by (9). Therefore, the local truncation error E(X) is the difference of the 
two terms or 

E(X) = V [ ,i, riYi(x - xi) (u(x) - s)] 
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A Taylor series expansion of u(xI) about x yields, for scheme A, 

u(x) - Jg = u(x) - II( 

=[(x-Xi)‘V]U(X)+‘~‘, 

so that 

E(X) ~ ’ ] ~ fiyi(X - Xi)l(X - X;) 01 u(x)l . 
i -- I 

(29) 

In many cases of interest the quantity (x - xi) yi can be related to derivatives of yi. 
For a Gaussian core, for example, 

(x - Xi) yi = (aQ2) VYi(X - Xi). (31) 

Thus. 

I 

.v 
E(X) z v \‘ f,(o;/2)(vy; V)u 

iT1 I 
) 

(32) 

i.e., the vortex method using Gaussian cores is second order accurate in u. Because 
smooth distributions in vorticity can be achieved by choosing /I - u, where /I is the 
average spacing between blobs, the method is also second order in fi. The same result 
applies to scheme B following a slightly more involved analysis. If ui = u for all i, we 
can write (32) as 

(33) 

where repeated indices are summed and Lji, is the strain rate tensor 

For incompressible flow Sj, has one real positive and one real negative eigenvalue of 
equal magnitude. Thus, the error is not diffusive to order u2. 

Higher order schemes can be generated easily by choosing y to depend only on the 
magnitude of its argument and demanding, for example, that 

xy(x) = (-l>m’2 - (UP)” V(Vm- 2) )qx) 

m (34) 
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for even integers m, yielding an mth order scheme. The form of the resulting y can be 
determined by Fourier transformation of (34). If 

j(k) = 1 eeik “y(x) dx, (35) 

we find 
y”(k) = e- (ko/W”, 

(36) 

and hence 

y(x) = &I” e-(ku!2)mJo(k lx I)k dk. 
0 

(37) 

As m + co we obtain a spectral-like scheme with 

1 
Y(x)= ____ 

J 21x1 
2n)x/c7 ’ T- . c 1 

(38) 

The core distributions for m = 2, 4, and co are shown in Fig. 2. It would be 
interesting to test some of these higher order schemes. Many more possibilities exist 
for a given order. The choice of (34) is only a particular one. A general class of core 
distributions for mth order schemes has Fourier transforms with the property 

f(k) = 1 - O(P), k + 0, 

corresponding to the following (m - 2)/2 integral constraints on the core distribution 
function, 

( y(x) /x 12j dx = 0, j= 1, 2 ,..., F. 

FIG. 2. Vortex core distributions for m = 2. 4, and co. 
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Hald and Del Prete [ 121 were first to determine that specially constructed core 
distributions could be used to achieve higher order accuracy and they performed 
numerical experiments to verify their analysis. The system of constraints given above 
for an mth order scheme represents the generalization of their single constraint for the 
case m = 4. Hald [lo] used distribution functions satisfying the m = 4 constraint to 
construct his convergence proof. His analysis is quite involved, apparently because he 
desires a given order of accuracy after an arbitrary time of integration. According to 
Hald, one should use relatively large cores sized by u N /I”* rather then /I. Thus, a 
fourth order scheme (m = 4) becomes only second order in /I. Further work is 
required to better understand the meaning of this requirement. It may be related to 
the fact that a shear layer, for example, may experience continued stretching along 
part of its length, thinning out of vortex blobs representing that portion of the layer. 
To maintain high accuracy in approximating a continuum of vorticity one would 
have to start with a high degree of overlapping of the vortex cores. 

D. Viscous Efects 

The appearance of the vorticity diffusion term vV*u in the vorticity transport 
equation has two ramifications: vorticity creation at the boundary and diffusion of 
vorticity in the flow field. As mentioned above the diffusion of vorticity can be 
accounted for accurately by allowing Guassian vortex cores to increase in size 
according to (18). An alternative scheme of adding a random walk each time step 
was introduced by Chorin [8]. Here the step length is propertional to (vdt)“‘. The 
idea is that the effects of viscosity are correctly reproduced in a statistical sense. 
Ashurst [ 131 has tested the random walk schemes on a time-developing boundary 
layer and achieved satisfactory results. Milinazzo and Saffman [ 141 found that to 
achieve accurate results for the viscous decay of a uniform vortex using a random 
walk scheme the number of vortex elements had to be large compared to the 
Reynolds number. (see however [ 15, 161). Other techniques used in the simulation 
may result in the diffusion of vorticity whether it is intentional or not. Two examples 
are the combining of vortex blobs and the use of low order time integration schemes. 

In flows where boundary-layer separation is an inportant physical phenomenon, 
such as flow past bluff bodies, the vorticity creation process at solid wall boundaries 
and the subsequent transport of vorticity along the boundary must be modeled 
correctly. Many authors introduce circulation at or near the separation points, relying 
on boundary-layer calculations, experimental information, or other a priori 
knowledge to determine the separation points [ 1, 17, 181. The rate of creation of 
vortices at each point is determined from the kinematic condition, 

dr 
$2, -uZ), x=-2 (39) 

where u* are the upper and lower speeds on either side of the separating shear layer 
and dT/dt is the flow of circulation in the shear layer passing a fixed station, as 
indicated in Fig. 3. If relatively few vortices are used per unit length to represent the 
free shear layer, care must be taken to avoid spurious results. Various rules have been 
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FIG. 3. Schematic of separating boundary layer. 

developed to choose the point of creation relative to the body surface and other 
parameters of the creation process [ 1, 17, 181. 

A more ambitious approach is to create vortices at the boundary to maintain the 
no-slip condition at the surface (see Fig. 4). The vortices thus created that are still 
close to the surface represent the boundary layer. If the mechanics of the boundary 
layer are being simulated correctly, vortices will separate automatically from the 
surface layer near the true separation points. A numerical method based on these 
notions is as follows [S]. At each time step, 

1. Create vortices at the boundary to maintain the no-slip condition at the 
surface. 

2. Move vortices with the local velocity to satisfy the inviscid part of the 
equations of motion, using image vorticity or boundary integral methods to satisfy 
the tangency boundary condition (6b). 

3. Simulate vorticity diffusion by a change in core size or a random walk. 

Such a split scheme was shown by Chorin et al. ] 191 to converge to the solution to 
the Navier-Stokes equaions as long as each substep is convergent. 

To achieve an accurate simulation of high Reynolds number, boundary-layer flows 
one would like the vortex core size to be some fraction, f, of the boundary-layer 

<: NEWLY CREATED 
VORTICES 

FIG. 4. Vortex creation to satisfy the no-slip condition. 
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thickness, 6, or o - fS, and to have the boundary layer, of streamwise extent L, filled 
with vortex blobs. The number of blobs N required to represent the boundary layer is 
then given by 

or 

NO2 - 6L, 
(40) 

L Re”’ 
N-gT-f2. 

(41) 

For example, to simulate flow past a cylinder at Re = 10,000 would require approx- 
imately 5000 vortex blobs to represent the boundary layer, assuming the layer 
averages 5 to 10 blobs in thickness. Because the operation count is O(N’)/time step, 
computer budgets to date have not allowed such extravagance. One has been forced 
to rely on free parameters in the vortex creation process to obtain good results. One 
parameter, for example, is the distance of the creation point to the surface 
representing the initial diffusion of vorticity away from the wall. Nevertheless, the 
choice of these parameters often can be made on a sound physical basis, and the 
results have been very encouraging [8,20,21]. 

Another approach is to take a lesson from the boundary-layer approximation: 
derivatives along the direction tangent to the surface are much smaller than 
derivatives in the normal direction. In Eulerian methods, use of a high-aspect-ration 
grid cell is standard practice near a solid boundary. For vortex methods, boundary- 
layer theory suggests using vortex blobs that are elongated in the tangent direction, 
thus requiring fewer blobs to represent the boundary layer. Chorin [22] made a 
specific suggestion in this direction. He proposed the use of finite vortex sheets in the 
vicinity of the boundary. Cheer [23] has applied this method to the problem of flow 
past a cylinder for Re = 1000. Using 100-200 vortex sheets to represent the 
boundary layer and 500-1000 blobs for the wake, she obtained a drag coefficient that 
is within 2 % of experiment. The lift history fluctuated about zero but the data were 
not analyzed to obtain a Strouhal frequency. 

E. Applications of the Blob Method 
To illustrate some of the ideas put forth above, an example flow was simulated by 

P. Spalart (Stanford University, Stanford, Calif.) using a vortex blob method. The 
flow is a mixing layer shown schematically in Fig. 5; see Ashurst [ 131 for a more 
thorough study of this flow using vortex methods. Acton [24] has studied the time- 
developing mixing layer (with spatial periodicity). 

At every time step, a new vortex with a Gaussian core is placed at the left-hand 
boundary at y = 0. The circulation r of every vortex is given by 

r=+:-u;). (42) 



VORTEX 301 

COMPUTATIONAL 
DOMAIN 

FIG. 5. Schematic of (a) two-dimensional mixing layer and (b) vortex simulation of the mixing layer. 

in satisfaction of Eq. (39). Since the vortices move with speed (u, + Q/2 in an 
undisturbed shear layer, the nominal spacing between vortices, d, is 

2At 
d=------. 

Ul +u2 
(43) 

The core size u must be comparable to d to obtain a smooth representation of the 
shear layer. In this simulation 

a=3d. (44) 

The inflow condition for vorticity at the left boundary is satisfied by the creation 
process cited above. The outflow condition is satisfied simply by removing a vortex 
from the computation as it passes the right boundary at x = x,. This assumes that 
there is negligible transport of vorticity in the negative x direction at x = xR. The 
velocity field must also be computed at every time step, and contributions to the 
velocity from vorticity outside the computational domain plus the maen flow 
(u, + u2)/2, must be included. The additional vorticity is assumed to be in the form 
of two semi-infinite sheets of thickness 2a spanning 

- co<x<x,-d 

and 

with circulation/unit length equal to U, - u2. The sheet downstream of x = xR is 
clearly only an approximation to the actual unsteady shear layer that would exist in 
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L 

xL t = 0.433 XR 

I 

t = 0.467 xR 

b 
@ 

J 
xL t = 0.500 XR 

.---**-* 3 +q$#s +N;+*++t : 

4r@ 

+ 
:r ’ 

+4+ 
t = 0.433 

t = 0.467 

FIG. 6. Vorticity contour plots and corresponding vortex locations in the two-dimensional mixing 
layer. 14, = 3, u, = 1.x, -, Y, = 1, 0 = 0.005; contour levels, -25, -75, -125, -175 ,.... 



VORTEX 303 

this region. A slight improvement might be to use a thickened shear layer for x > xR. 
Another alternative would be to follow the vortex blobs farther downstream but to 
combine vortices that are close to each other in the downstream portion of the 
computational domain. This procedure seems analoeous to using a coarse 
downstream grid in an Eulerian calculation. 

FIG. 7. Streakline plots of each discrete vortex for a unit time (L/AU) with respect to the average 
velocity. The field of view is equal to 4OL. The top plots have the origin at the left with each succeeding 
plot displaced two units downstream and two units later in time. Left column is 250 Re flow and right 
column is 1000 Rr; (u, + u?)/ (2 da) = 1.05. (Permission to use figure granted by W. T. Ashurst.) 
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The start-up procedure consists of moving the upstream edge of the downstream 
vortex sheet with constant speed (u, + n2)/2 from x = x, to its permanent location at 
x=xR. This procedure preserves approximately the total circulation in the 
computational domain and produces only a small perturbation in the shear layer at 
x=xL at t=O. 

The vortex locations at three instants in time and corresponding vorticity contour 
plots are shown in Fig. 6. The contour plots demonstrate that a collection of vortex 
blobs is capable of representing physically reasonable distributions in vorticity. After 
the start-up phase, the average number of blobs in the computational domain is 600. 
On the other hand, it is estimated that a mesh of z22,500 points (300 x 75) would be 
required for an Eulerian simulation of this flow with Ax = Ay = 2d. The CPU- 
time/time-step required on the CDC 7600 is approximately (N/6OO)2 set, where N is 
the number of vortex blobs; the high cost of this method as N increases is obvious. 

The time marching algorithm was scheme A with a multistep predictorcorrector 
integration method. The time step At was z2d/(ulmax, demonstrating that rather large 
time steps can be employed. Vortex methods are not subject to the usual convective 
instability. 

In Ashurst’s vortex simulation of the mixing layer [ 131, several thousand vortex 
blobs were used to represent the space-developing mixing layer. In Fig. 7, streakline 
plots produced by displacements of the vortex elements are shown for two Reynolds 
numbers at 10 succeeding times. The field of view is moving with the average 
velocity. In this case the higher speed flow is on the bottom. The eddy-pairing 
process, known to be present in experiments, is clearly shown. In comparing with 
experiment at moderate Reynolds number, Ashurst found good agreement in mixing 
layer growth using the random walk technique to simulate viscous diffusion. By 
adding the viscous growth of the core according to Eqs. (16~(18) he also obtained 
very good agreement with turbulent shear stress profile and the longitudinal and 
normal velocity fluctuation profiles. Good agreement was also obtained at high 
Reynolds number except for the normal velocity fluctuations. Presumably the 
presence of streamwise vortices in experimental high Reynolds number flows 
produces significant effects that are not easily modeled in two-dimensional vortex 
simulations. 

F. Method of Contour Dynamics 
If the two-dimensional vorticity field is assumed to be initially regionwise constant 

then, for inviscid motion, it will remain so, each region distorting under the straining 
action of the velocity field. In this case only the boundaries of each region need be 
tracked. A numerical scheme based on this observation has been proposed by 
Zabusky et al. 1251; they call it the “method of contour dynamics.” 

The velocity field required to move the boundary curves reduces.to a line integral 
along these curves (see Fig. 8) 

w?, t) 
U(x)=~l,AWlog(x-r(g,t~,-5_d~, 

( 
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FIG. 8. Schematic of the integration scheme for the contour dynamics method. 

where Aw is the jump in w at r(c, t), Aw = wright - mleft. The equations of fluid 
motion then reduce to nonlinear evolution equations for the planar curves 
representing the region boundaries, 

WC, f) 1 ^ 
- = - 

J at 272 c 
do log ]r(& r) - t(T’, t)] (46) 

where < is a material marker along the curve. The only error in computing the 
evolution of the flow is that made in tracking the motion of these planar curves. For 
numerical purposes, Zabusky et af. mark the curves with node points and follow the 
points using a straightline approximation to evaluate the integral along each segment 
of the curve. The motion of such curves with a log singularity in the integrand should 
be much more favorable to numerical schemes than the motion of vortex sheets with 
their l/x singularity. 

An interesting application of the method has been to determine stationary states of 
finite-area, constant-vorticity regions, the simplest example being the Kirchoff ellip- 
tical vortices, having twofold symmetry. Deem and Zabusky [26] computed families 
of vortices having threefold and fourfold symmetry, as illustrated in Fig. 9. (In a 
related calculation in axisymmetric geometry, Norbury [27] determined a family of 
stationary cross-sectional shapes of vortex rings. In this case TO(T) = const. within 
the vortex ring.) 

Examples of flows were also computed where the boundary curves formed 
singularities, cusps, or filaments. In this situation and in the general case where the 
total length of the boundary curves would be expected to increase with time, 
remeshing of the boundary curves will be necessary. In this process, certain fine-scale 
details will be lost from the simulation. It is hoped, however, that the line-scale 
structures that are removed by the remeshing process will have little influence on the 
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d 

cl c 
FIG. 9. Threefold (a, b) and fourfold (c, d) symmetry states as computed by the contour dynamics 

method (26 1. 

dynamics of the larger scales. It seems that the proper way to view this procedure is 
to consider the generation of line scales and their subsequent removal by remeshing 
as a representation of the turbulent cascade of energy to small scales. 

3. THREE-DIMENSIONAL SIMULATIONS 

A. Vortex Filaments 
A natural generalization to three dimensions of the two-dimensional vortex blob 

method described in the previous section is to assume that the vorticity field is 
represented by a collection of L tubes or filaments of vorticity. By Kelvin’s theorem 
the circulation of filament i given by 

ri = I o dA (47) 
core i 

is constant in time for an inviscid fluid. The spatial configuration of this filament at 
time t is given by the space curve ri(& t), where < is a parameter along the curve, 
usually a fluid particle marker. Thus, in analogy with the two-dimensional vortex 
blob method, the vorticity field in three-dimensions is given by 

(J)(X, t) = $J Ti 1 i=l . yi[x -ri(r13 t)l gd5’. (481 
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where yi is a filter or distribution function having the normalization 

I y,(x) dx = 1. (49) 

It is assumed that yi has the form 

The quantity cri will be referred to as the core radius of filament i. A schematic 
representation of a vortex filament is shown in Fig. 10. 

The resultant velocity is given by the solution to 

v2u = -v x w, (5la) 

with the boundary condition, 

” nlsurrace = 0. (5 lb) 

Using the infinite-medium Green’s function for the Poisson equation we find u in 
terms of the Biot-Savart integral 

“(X, t) = - & [ 
(x - x’) x w(x’, t) dx’ + v~ 

d (x--‘I3 ’ (52) 

where 4 is a velocity potential constructed to satisfy the inviscid boundary condition. 
Inserting the representation (48) into (52) we find that the Biot-Savart integral 
reduces to a sum of line integrals over each of the space curves representing the 
vortex filaments, 

“(X, t) = - -& f rj ( ix - rj(r’? f) 1 X ($/at’) q(l x - ril/u,i) dr 
.,“I . Jx - ril” 

3 (53) 

20 

“=s s.dA=CONsT 
CORE 

FIG. 10. Representation of a vortex filament. 
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where q is defined by 

q(y) = 4n 
I 
’ p(t) t* dt, (54) 
0 

and where it is assumed that yi is spherically symmetric and that no boundaries are 
present. From the normalization of yi it is noted that q(y) + 1 as y + co so that at a 
distance large compared to the core radius the induced velocity may be calculated as 
if all the circulation were concentrated on the line r,(<, t). Assuming p(t) < co, q is 
O(y3) for small y; therefore u(x, t) remains bounded. 

B. Inviscid Dynamics of ri, ui 

In an exact simulation of inviscid flow, vortex lines would move as material lines 
(Helmholtz’ theorem), i.e., with the local velocity. However, in the approximation 
(48) a collection of vortex lines must be moved as a single entity. Therefore, an 
appropriately averaged velocity must be chosen. A general form, used in several 
studies, is 

where s is symmetric in ui and uj and has properties similar to q, 

s(Y, ui, uj) + l, y-+ a; 

s(Y~"i~uj)-tO(Y3)~ Y+O* 

If s = 1 we recover the dynamics of a line filament leading to logarithmic singularities 
for the velocity as discussed below. Therefore, the function s is a mollifier and a 
necessary ingredient in three-dimensional simulations. The symmetry of s in ui and uj 
leads to exact conservation of linear and angular momentum. In addition to a specific 
choice of s, the dynamics of the core must be chosen. Below are given two particular 
choices and motivation for each. 

In scheme C. s is of the form 

S = S[lfj - rjl/((Uf + U,j)/2)“‘] W) 

and satisfies the integral constraint, 

1 
O” S(Y) ’ I-‘(t) dt 

-dy=log4-;++ 7+j 
cc I-‘(t) - 1 

0 Y 0 I 
t dt, (56b) 

where T(t) is the fraction of circulation within a dimensionless distance t = r/u of the 
center of the core, given by 

r(r)= [ 1 -4fp(s)s*(I -;) 1’2ds], (56~1 
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For scheme C the dynamics of the core is given by 

f (u;g) = 0, 

where gt) is the instantaneous total length of filament i, 

g= (58) 

In this scheme the integral constraint (56b) ensures that the inviscid dynamics of an 
arbitrary vortex tube is recovered when the core radius is much smaller than any 
radius of curvature along the tube [ 11,28, 291. The dynamics of ui given by (57) 
expresses conservation of volume for each filament and produces an increased 
amplitude of the vorticity within a filament as L$ increases (vortex stretching). The 
assumption that oi remains independent of position along the filament is suggested by 
Moore and Saffman [29], who argue that internal waves within the filament would 
act to smooth any variations along the length of the filament. Equation (57) for ui 
together with the constraint on s, (56b), yields conservation of energy for an arbitrary 
collection of filaments when the cores have negligible overlap [ 111. A specific choice 
for s 130, 3 1 ] is 

1 
‘cy, ‘iy 9) = [ 1 + a(u; + u;)/2y213/2 3 (59) 

where the choice a = 0.413 for a Gaussian distribution of vorticity within the core 
satisfies the integral constraint (56b). Thus, for example, using (55) with (59) one 
would compute the correct speed of a single vortex ring with a core radius that is 
small compared to the ring radius [32]. 

In scheme D we assume, in analogy with scheme B for two dimensions, that the 
velocity of the space curve is computed as an average over the filament, using the 
distribution function yi as a kernel for the averaging process. Thus, 

%- r dt -, yi(ri - x’) u(x’, t) dx’, 

giving s in terms of p as 

s(Y, ui, uj) = (4n)2jom jom 2 ’ u U P(U)P(U) h(J’, UiU, UjU) dU dv, (614 

where 

h(Y, w, z> = 1, w+zsy, 

= Y*-(~--z)* 
4wzy ’ 

Iw-zjsysw+z, (61b) 

= 0, YSIW--zl. 
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Again, the symmetrical appearance of ui and uj ensures exact conservation of linear 
and angular momentum. This scheme yields exact conservation of kinetic energy, 
irrespective of core overlap, if the dynamics of each core is given by 

It would seem that (62) violates conservation of volume for the fluid containing 
vorticity in inviscid motion. In this scheme, however, it is appropriate to think in 
terms of a “swarm” of filaments with overlapping cores as representing a region of 
rotational fluid. Then, for example, the local elongation of the filaments defining a 
physical tube of vorticity as shown in Fig. 11 would lead to a closer packing (and 
hence greater overlapping of the cores) because of the incompressibility of the fluid. 
Thus, we obtain approximate conservation of volume of the physical tube of vorticity 
as well as intensification of the vorticity field within its core because 

where the nomenclature is defined in Fig. 11. 
Based on the above considerations it would seem that scheme C is better suited for 

the case in which a computational filament is used to represent an actual tube of 
vorticity and that scheme D should be used to simulate the motion of a distributed 
continuum of vorticity. 

C. Local Induction Approximation 

It should be noted that the analog to the two-dimensional point vortex method does 
not lead directly to an interesting computational technique in three dimensions. If 

FIG. Il. Schematic of vorticity intensification in the constant-core model. 
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c -+ 0, then s + 1 and the leading term for the filament velocity is the self-induced 
contribution due to the local curvature of the filament, 

3 _ rib 
at --log$+ O(l), 

47% 
(63) 

where pC is the local radius of curvature of the filament and b is the unit binormal 
(see Fig. 12). Therefore, a log singularity in the velocity of the filament arises as 
u + 0. However, using only the leading term for &,/at in (63) and assuming that the 
log term is constant over the filament, one obtains the local induction approximation 
for the motion of a vortex filament, 

at;- = c 3 x a2ri 

at ay P’ 
(64) 

where r is now an arc length parameter. Although this approximation is only of 
theoretical interest, Betchov [33] found analytically a number of interesting 
properties of the dynamics of space curves governed by (64), including dispersive and 
diffusive behavior. Later, Hasimoto [34] showed that this dynamics allowed the 
existence of solitions, nonlinear solitary waves that preserve their identity even after a 
collision of two waves. 

It is interesting to note that there seems to be no analog of the contour dynamics 
methods for general three-dimensional flows. What would be required is that the 
support of V x o remain on two-dimensional surfaces moving with the fluid velocity. 
Unfortunately, the transport equation for V x cu contains source terms in a three- 
dimensional flow while it does not in two-dimensions. 

FIG. 12. Definition of terms for the local induction approximation. 

b=t n 
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D. ViscousjSubgrid-Scale Effects 
As in two-dimensions, the effect of the term vV*w in the vorticity transport 

equation for a viscous fluid can be treated exactly by using a Gaussian distribution, 

with a viscous fattening of the core according to (18). This procedure should give 
satisfactory results for sufficiently low Reynolds numbers (v large) although no 
published studies along this line are known at this time. For h&h Reynolds numbers, 
however, the space curves r,(<, t) defining the vortex filaments may be subjected to 
significant localized stretching and distortion because of the large velocity gradients 
induced by the filaments with small cross section. These effects are, of course, a 
manifestation of turbulent flow. As discussed below, one normally would not have 
available the computational resources to describe accurately the motion of a 
collection of space curves with increasing regions of complex, fine-scale structure. 
Rather these simulations of medium to high Reynolds numbers should be carried out 
in the spirit of a large-eddy simulation [35, 361. Here one computes approximately 
the dynamics of the large turbulent scales, while modeling the effect of the smaller, 
subgrid scales on the larger computed scales. In Eulerian simulations this is often 
accomplished simply by using a turbulent eddy viscosity that is constant, depends on 
the local rate of strain tensor, or on the vorticity: 

vT - const., (66) 

vT-A21Sjkl, (67) 

VT-A2/4, (68) 

where A is the grid spacing for the Eulerian calculation. Similar techniques can and 
have been used in vortex methods. For example, (68) suggests a filament-dependent 
viscosity proportional to the circulation, 

VTi - ri. (69) 

Another interesting possibility for subgrid modeling, which has been investigated to 
a limited extent, is to allow for the generation of some fine-scale structure on the 
space curves. The situation is similar to that discussed in regard to the contour 
dynamics method. This structure is then removed periodically by filtering or 
remeshing the space curves as illustrated in Fig. 13. This permits the fine scales to 
develop in a natural way retaining some interplay between the large and small scales. 
An analogous procedure has seen only limited use in Eulerian calculations [37], 
probably because of the expense. In this case one must compute with a fine mesh 
everywhere and periodically filter out the high wavenumber components of the 
velocity or vorticity field. 
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FIG. 13. Space curve with small-scale features, r(t) and curve after smoothing i(5). 

Another manifestation of viscosity is the change in topology of closely interacting 
vortex loops. Experimental results [38, 391 and vortex simulations [40] show that 
filament loops in proximity may, depending on their relative orientation, attract each 
other to the extent that their vorticity fields are cancelled significantly where they 
overlap. It is postulated that under these circumstances their respective vortex lines 
become interwoven until viscous effects destroy the line structure, thereby leaving no 
net vorticity in that neighborhood. From this process, a new geometric configuration 
arises, as illustrated in Fig. 14. Thus, if loops of two different vortex tubes collide, a 
single tube emerges; but if loops of the same tube undergo this process, two tubes 
emerge. In addition to the laboratory experiments cited above on interacting vortex 
rings, we note that by this process a pair of aircraft-trailing vortices might form a 
series of distorted vortex rings. The incorporation of this effect in a three-dimensional 
vortex method leads to troublesome bookkeeping problems but could yield substantial 
savings in the number of computational points for certain applications [40]. 

Finally, as discussed in Section 2, the presence of solid boundaries and the no-slip 
condition on the surface give rise to another important viscous effect-creation of 
vorticity at the surface. This new vorticity can be related to pressure gradients along 
the surface as follows. From the momentum equation evaluated at the wall we find 
that the increment in surface velocity &I, generated in time 6r is the sum of the two 
contributions. 

(70) 

where V, p is the gradient of the pressure on the surface, p is the fluid density, and v 
is the coordinate normal to the surface. The no-slip condition is satisfied when these 
two contributions cancel each other. The first term on the right-hand side of (70) is 

FIG. 14. Changing topology of vortex loops. 
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the slip generated in time 6t by the inviscid motion of the fluid. The second term is 
related to the flux of vorticity through the surface because of the identity, 

(71) 

where n is the unit outward normal at the surface. Combining (70) and (71) we find 
that the net flux of vorticity into the fluid is given by 

ao 1 
-v-=7x vsp* ar 

(72) 

Therefore, the vortex lines associated with this vorticity follow level curves of the 
surface pressure distribution, and the flux of circulation is proportional to the 
pressure gradient. 

This result suggests a split scheme whereby the inviscid motion and the vorticity 
diffusion are computed as outlined above. Then the flux of vorticity through the 
boundary that results from these two substeps is computed. Finally new filaments are 
added at the boundary so that the net flux satisfies (72). A simpler scheme is to 
compute the slip generated by the first two substeps and then correct to zero slip by 
creating new filaments, i.e., the analog to the two-dimensional scheme given in 
Section 2. 

To simulate three-dimensional flow past a sphere Leonard [41] used a simplified 
model of the boundary layer in which only certain integral properties were taken into 
account: (1) the net vorticity per unit area within the boundary layer is perpendicular 
to an equal in magnitude to the velocity at the edge of the boundary layer, u(P,), and 
tangent to the body surface, 

!’ 

s 
@(VI drl = n X u(r,); (73) 

0 

and (2) the circulation within the boundary layer passing a given surface point per 
unit time in the streamwise direction is given by 

(74) 

Thus, the average vorticity in the boundary layer has an apparent speed of Iu(r,,Z. 
In the model, the boundary-layer vorticity is divided into two parts: (1) an upstream 
attached layer of vorticity (composed of a single sheet) and (2) vortex filaments 
downstream of this sheet. The downstream boundary or front of the sheet moves with 
the local speed lu(r,)l/2. When the front moves past a specified downstream latitude, 
a ribbon of the sheet is removed from the downstream edge and formed into a vortex 
filament (see Fig. 15). The height of the new filament above the surface is chosen so 
that the filament speed is lu(r,)l/2, and the new position of the sheet front is deter- 
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FIG. 15. Boundary-layer vorticity (a) description of terms for the boundary layer; (b) formation of 
new vortices from the attached sheet in the model of 1411. 

mined to maintain Eq. (74). In Leonard [41] the core size o was chosen to maintain a 
relatively smooth representation of the boundary layer as in tlie mixing-layer 
simulation described in the previous section. A more refined technique might be to 
choose u to preserve a precomputed momentum thickness or to preserve kinetic 
energy in the boundary layer [42]. Note that any vorticity production downstream of 
the edge of the sheet is ignored. Downstream of separation, however, vorticity 
production at the surface is known from experiment [43] to be small due to the 
nearly flat pressure coefficient in this region. The remaining error can be minimized 
by adjusting the cutoff latitude to be close to separation. 

Recently, Chorin [44] has generalized his two-dimensional boundary-layer method 
using vortex sheets to three dimensions. Now the computational elements in the 
boundary layer are “tiles,” which lie parallel to the surface and represent vortex 
sheets; the sheets are of finite length in the direction of the vorticity vector. Any local 
generation of slip can be cancelled by the creation of a new tile at that location with 
the proper strength and orientation. Away from the surface the tiles become finite 
tubes of vorticity-a technique used successfully by Rehbach 145 ] to simulate 
unsteady vertical flows past lifting surfaces in three dimensions. Although the 
solenoidal condition V o = 0 is only satisfied approximately, certain computational 
advantages are gained. 

For most three-dimensional separated flow problems it might be sufficient to treat 
the turbulent boundary layer in terms of the boundary-layer equations with a 
turbulence model. Effects such as boundary-layer turbulence and external streamline 
curvature and their influence on the separation process could be represented in a 
realistic fashion. 

E. Applications of the Vortex Filament Method 
The first application of the three-dimensional vortex filament method is to the 

simulation of the interaction of aircraft-trailing vortices. Studies of this type are 
primarily motivated by the hazards to which light aircraft are exposed when flying in 
the wake of a heavier aircraft-a wake that may contain vortices with large 
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circulations and small cores. In such cases, following aircraft may be subjected to a 
very high rolling moment when they encounter one of these vortices. 

One possible method of alleviating this hazard is to provide a wing loading that 
produces multiple trailing vortices from each wing. It is hoped that by proper 
adjustment of the positions and strengths of these vortices (through the loading 
distributions on the wing), a strong interaction and merging of these vortices will 
occur a short distance downstream, resulting in a single vortex with a very large, 
diffuse core. 

A schematic of the numerical simulation of this interaction process is shown in 
Fig. 16. An independent calculation (e.g., by a vortex lattice method) or experiment is 
required to determine the filament circulations, rj, the core sizes ui of the filaments, 
and the locations (yi, zi) of the filaments in the plane just downstream of the roll-up. 
The computational domain extends from this plane to a plane downstream of the 
region of interest. During the simulation, points are added continually at this trailing- 
edge plane as the other computational points are moving downstream with an average 
speed of U,. For numerical treatment of the Biot-Savart integration (55) the space 
curves, curves, r,(<, t), are assumed to be piecewise linear between successive 
computational points. (In unpublished work, D. Degani and the author (1976) 
investigated the use of cubic spline representations for the space curves. The were 
found useful for remeshing purposes and for obtaining integration schemes with 
higher order accuracy at some additional computing effort.) Downstream of the 
computational domain semi-infinite vortex filaments are used as shown in Fig. 16 to 
account for the incremental velocity induced on the computational points from wake 
vorticity in this downstream region. This situation is completely analogous to that in 
the two-dimensional mixing-layer simulation of the previous section. Velocity 
contributions from the potential flow and wake due to the fuselage were neglected in 
the simulation. 

Because of the availability of experimental data, the wake of a Boeing 747 wing 

COMPUTATIONAL 
~-----DOMAIN -7 

bSSJMED DOWNSTREAM 
FILAMENT 
CONFIGURATION FLIGHT SPEED = U, 

FIG. 16. Simulation of aircraft-trailing vortices. 



VORTEX 317 

with inboard flaps at 30” was simulated. (See Hackett and Evans [46] for similar 
studies of aircraft wakes and Moore [30] for a simulation of the instability between 
two counterrotating tip vortices.) The span loading as predicted by a vortex lattice 
method is shown in Fig. 17. Based on this loading pattern one would expect three 
vortices on each halfspan to emerge from the roll-up process immediately 
downstream of the trailing edge of the wing- two vortices of opposite sign produced 
by the flap and one vortex from the tip. This is verified by experiment. For this 
simulation the initial conditions, rj, pi, and (vi, z,), were obtained from laser 
velocimeter measurements in the wind tunnel [47]. 

The results of a water tunnel experiment [48] using flow visualization with dye to 
follow the motion of the wake vortices were available for comparison with the 
simulation. Figure 18 shows the computed configurations of the filaments after initial 
transients in the simulation have settled out. Note the upward and inward motion of 
the tip vortex which initially is primarily influenced by the stronger outboard flap 
vortex. The inboard flap vortex is seen to suffer an instability in agreement with flight 
tests 1491. The simulated and measured trajectories of the tip vortex about the 
outboard flap vortex in the cross-sectional plane are shown in Fig. 19. The agreement 
is quite ‘good on this very sensitive quantity. As a comparison also shown are the 
results of a vortex simulation using initial conditions estimated from a vortex lattice 
calculation and additional computational procedures. Note that in this case, the 
stimulated results were not satisfactory. The tip vortex revolved clockwise about but 
away from the flap vortex as shown in Fig. 19. Experimentally this sensitivity was 
demonstrated by the fact that for the 30” flap configuration a beneficial merging of 
the vortices occurs with landing gear up but not for the landing gear down [47]. 

For a second example we present selected results of a simulation of a three- 
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FIG. 17. Vortex lattice calculation of lift distributions for a Boeing 747. 
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FIG. 18. Vortex filaments in the simulation of the wake of a Boeing 747. 
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FIG. 19. Trajectories of the wing-tip vortex from experiment and vortex simulation. 

dimensional spotlike disturbance in a laminar boundary layer [ 3 11. In this case the 
vortex filaments must represent a continuum of vorticity which initially is in the form 
of an infinite sheet of finite thickness, i.e., a boundary layer. The numerical 
simulation follows the evolution of a small localized disturbance in the layer as it 
grows by linear and nonlinear interactions. As indicated in the schematic (Fig. 20) 

SIDE 
VIEW REGION OF 
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PLAN 
VIEW ,r x 

z w 
Spot geometry. FIG. 20. 
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FIG. 21. Vorticity distributions: (a) optimum vortex representation; (b) suboptimum choice of core 
size. 

the disturbance in the simulation is created by a local distortion of the vortex 
filaments at t = 0. The boundary layer is represented by six layers of vortex filaments. 
By proper choice of the ui and Ti for each layer the desired vorticity distribution can 
be well approximated, as indicated in Fig. 21. Computed filaments are added 
automatically as the disturbance grows in size. The numerical procedures used are 
essentially those of the previous example except that image contributions are 
computed to satisfy the inviscid boundary condition. The generation of new vorticity 
at the wall due to the no-slip condition is ignored. At the end of the simulation about 
8000 points represent one half of the spot (symmetry of the flow about the midplane 
was enforced). Run times are l-2 hr on the ILLIAC. 

In Fig. 22, the space curves defining the vortex filaments in a single layer are 
shown at three different times. The spreading of the disturbance and the increasing 
debrmations suffered by the vortex lines are quite evident. From the space curves 
defined by the computational grid of node points we can generate vorticity/velocity 
field information as desired (cf. Eqs. (48) and (53)). For example, vorticity and 
velocity contour plots in the horizontal plane are shown in Fig. 23, and in Fig. 24 we 
show a streamwise vorticity contour plot for a spanwise-vertical plane. (In each case 
only one half of the spot is shown because of symmetry.) Note the appearance of 
intense streamwise and vertical vorticity generated in the flow in agreement with the 
pattern of vortex lines displayed in i’ig. 22. The presence of streaky structures in the 
U’ and u plots in the horizontal plane is in agreement with experimental observations 
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of turbulent boundary layers. Other comparisons with experimental results on 
turbulent spots, such as the propagation speed of the disturbance, are also quite 
encouraging. 

Other investigations of three-dimensional boundary layer phenomena by vortex 
methods include an early study by Hama (SO] who, motivated by his experimental 
observations of boundary layer transition, computed the motion of a single vortex 

FLOW -L 

= 18 

t= 25.2 

FIG. 22. Top and rear views of one plane of the computed vortex lines. 
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loop. Recently, Chorin [44], using the “tile” method described earlier, studied 
boundary layer instability. 

Other applications in three dimensions include Del Prete’s study (5 1 ] of vortex 
breakdown, the author’s simulation [41] of flow past a sphere, and Meng’s 
investigation [52] of the evolution of a vortex ring in a stratified and shearing 
environment. In Meng’s study, modifications to the basic method were required to 
account for vorticity sources due to density stratification. 

6 

WY y = 0.4 

6 

0 
3 24 

6r I 

24 

FIG. 23. Contour plots in the horizontal plane, y = 0.4, t = 24. (a) 0,; (b) u’, perturbation in 
streamwise velocity; (c) t’, vertical velocity. 
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FIG. 24. Contour plot of streamwise vorticity in a spanwise-vertical plane 

4. VORTEX-IN-CELL METHODS 

In the vortex methods described above the velocities required to move the 
computational elements each time step are essentially computed by a Green’s 
function solution to the Poisson equation (6) or (5 1). For N computational elements 
or points this procedure requires O(N’) operations to compute all the required 
velocities. This places a rather modest upper limit on the number of elements that can 
be used if about 1 hr of CPU time for a given problem is allowed. Experience has 
shown this limit to be N z 1000-2000 for a CDC 7600 and 4000-8000 for ILLIAC. 
Depending on the application, various shortcuts can be used to decrease the 
computing time, such as combining a number of elements in a given region into a 
pseudoelement to compute their influence on distant points. 

In this section we discuss a systematic approach to the problem which results in 
what are termed vortex-in-cell methods. The idea is to retain the Lagrangian 
treatment of the vorticity field but to solve the Poisson equation for the velocity field 
on a fixed Eulerian mesh. By use of fast Poisson solvers on a mesh of A4 grid points, 
the operation count for this step can approach O(M log M). Additional required steps 
are (1) the generation of mesh values for the vorticity field from the Lagrangian 
representation and (2) interpolating velocities from the mesh back into the 
Lagrangian points. As we shall see these two steps require only O(N) operations per 
step. Therefore we find that the computing time per step for the two methods is as 
follows: 

Direct interaction: CPU time/step 2 C, N2 

Vortex-in-cell: CPU time/step z C, N + C,M log, M 
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Depending on the problem, the number of mesh points, M, required could be O(N) or 
much larger. 

A. Cloud-in-Cell Method 

We now describe a particular way to implement these ideas in two dimensions, 
called the could-in-cell (CIC) method (531. A given vortex, say at (x,. y,) with 
circulation r,, resides within a certain mesh cell, as depicted in Fig. 25, and 
contributes incremental vorticity, am(l), to each of the four mesh points at the corners 
(l= 1, 2, 3,4) according to the area weighting scheme, 

&o(Z) = A,T,/h’, (75) 

where h is the mesh spacing and the A, are the areas shown. A simple way to view 
this scheme is to imagine each vortex to have a square-shaped core with dimensions h 
on a side within which the vorticity is constant. Any vorticity that is within the 
region defined by 

h h 
Xi-T<X<Xi+~T 

h 
Yi-T< Y<Yi+p; 

(76) 

“belongs” to the mesh point (i, j). After all the vorticity has been distributed among 
the mesh points a finite difference form of the Poisson equation for the stream 
function, w, is solved. For example, one might solve 

(-&+$) lyi,j=-wi,i’ (77) 

where #/6x2 and J2/6y2 are the three-point central difference operators. If the flow is 
not periodic, boundary conditions for the stream function may need to be computed 
(see Baker [54] for a discussion of various possibilities). With the stream function in 
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FIG. 25. Area weighting scheme for the cloud-in-cell method (after 1541) 
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hand, velocities at the mesh points can be calculated, for example, by central dif- 
ferences, 

and (78) 

L?i,,i=- WitI,j-Wi-l./, 

2h 

and then bilinear interpolation (area weighting) can be used to determine the velocity 
of vortex n, 

u, = 5 u(l) $, 
I-I 

(79) 

and of all the other vortices. Clearly, the distribution of vorticity to the mesh and the 
interpolation of mesh velocities onto the vortices require only a fixed number of 
operations per vortex (independent of M or N) so that the operation count per time 
step for this portion of the computation is O(N). 

Using the CIC method, Christiansen [53] reported a number of interesting 

TIME = 0 TIME = 40 

(A) 

TIME = 80 TIME = 136 

TIME = 0 TIME = 48 TIME = 96 TIME = 160 

FIG. 26. Precession of two finite-area vortices as computed by the cloud-in-cell method 1531. 
(a) Small initial separation; (b) larger initial separation. (Permission to use figure granted by Dr. J. P. 
Christiansen. 
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demonstration calculations. The results of two of his cases concerning the dynamics 
of two finite-area regions of vorticity in proximity are reproduced in Fig. 26. The 
vortices, having the same circulation, precess about each other. Depending on their 
initial separation, they either coalesce (Fig. 26a) or they do not (Fig. 26b). In these 
simulations, w is assumed periodic in x and constant along the y boundaries. The 
computation was on a 64 x 64 mesh with approximately 3000 vortices. 

Figure 27 shows the simulation by Baker (541 of the roll-up of a vortex sheet. A 
total of 1950 vortices are used in a 129 X 129 mesh. Only half the points are shown 
in this symmetric problem. Each vortex has the same magnitude of circulation. The 
initial spacings between the vortices are chosen to represent the desired initial 

-. 31 I 
0 1 

‘11 I.... ‘~.. .* Wm... . . . . . . ;~ ..-.., ..$j! k % .-. . . ‘; - 
-.2 I 4 @!!I t=0.2 

i 
: .& 

+. 
--..* 

$ 
** . . . . . . . . . . . *. . 

I -. 4 
0 1 

FIG. 27. Cloud-in-cell simulation of the roll-up of a vortex sheet [54]. (Permission to use figure 
granted by Gregory R. Baker.) 
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vorticity distribution along the sheet. In the case shown, this distribution is chosen to 
simulate a vortex sheet shed from a wing with a flap deployed. The span loading is 
qualitatively similar to the one shown in Fig. 17. 

B. Error Considerations 

The hybrid scheme described above introduces several sources of error in addition 
to those discussed in connection with the vortex blob method. The distribution of 
vorticity to the mesh and the interpolation to obtain vortex velocities are subject to 
error, as are the differencing procedures used to solve the Poisson equation and 
determine the mesh velocities. Numerical studies by Christiansen 1531 and Baker 
[54] point to the anisotropic nature of the distribution and interpolation schemes as 
the most significant new source of error. To give an example, a straight section of a 
vortex sheet at an angle to the mesh lines will distribute vorticity to the shaded mesh 
cells, as shown in Fig. 28 [54] Relatively large perturbations due to the mesh are then 
produced on a scale comparable to the distance AB. This effect will often produce 
tine-scale structures, scaled by the mesh spacing, that are quite noticeable, say, in the 
vorticity distribution. Another indication of the existence and nature of this error is 
the fact that while the total circulation and linear impulse are conserved by the CIC 
method, angular impulse is not. However, numerical experiments in two dimensions 
[54] indicate that although these fine-scale errors are present they may not seriously 
affect the large-scale features. The latter seem to be mesh independent. 

C. Improved Techniques 

One proposal to improve the numerics of the CIC method has been put forth by 
Hackney et al. [55]. Rather than using area weighting to the nearest four mesh 
points, or equivalently, vortices with square, constant-vorticity cores (h x h), these 
authors propose the use of a truncated Gaussian core having a larger cross section 
(2h x 2h), 

- Ix - x,I*/~~], IX--x,l<hh, IY-y,l<h, 
otherwise, 

FIG. 28. Mesh cells involved in the distribution process 1541. 
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with (J = 0.643/r. This element contributes vorticity to the surrounding nine mesh 
points rather than to the nearest four. The interpolated velocities use the same nine 
weight factors so that the method approximates the pure Lagrangian scheme B of 
Section 2. Any residual errors produced by the squareness of the mesh plus the finite 
difference errors are nearly eliminated by adjusting, in Fourier transform space, the 
Green’s function of the discrete Laplace operator. Hackney et al. state that mesh 
errors are reduced by two orders of magnitude by these improvements. 

In Buneman 156-581 the Poisson equation for the fully periodic velocity field in 
two dimensions is solved by Fourier methods to obtain 

i(k) = $ (k x e^J G(k) 

for the Fourier transform of the velocity field in discrete k space. Because Fourier 
methods are used there is no need to correct for finite difference errors. The 
construction of o(k) follows by noting that the Fourier transform of (9) with the 
same distribution y for all vortices gives 

d(k) = f(k) f’ r, exp[-z-k x,,], 
n=1 

(81) 

implying O(NM) operations to determine G(k) (M is the number of Fourier modes). 
This operation count is reduced to O(N), however, by approximating exp[ik xn] by 
a linear combination of exp[zk . x(i,j)], where the x(i,j) are Eulerian grid points 
neighboring x,, and by using fast Fourier transform (FFT) methods. 

This approximation in each direction is taken as the best spline tit [58], namely, 
for linear spline interpolation with x between integer grid points n and n + 1, 

e ikx z S,(k)[(n + 1 -x) eikn + (x - n) eiktn+l)], Wa) 

or, for quadratic spline interpolation with n - i <x < n + i, 

e ikx z ~,(k){$(~ + f _ x)2 &k(n-l) + [a - (x - n)*] eikn 

+ j(x - n + 4)’ ,p(n+ 1) 1, Wb) 

and similarly for cubic and higher-order splines. The factors Si(k) are chosen to 
minimize the rms error of the approximation over all positions x between two mesh 
points. The functions S,(k) and S,(k) are found to be 

S,(k)= (~sin~)~( 1 -fsin2$ 

and 

S,(k)= (gsini)‘/( 1 - sin* 5 + $ sin4 k 
1 

. 

(834 

Wb) 
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In the method utilizing quadratic splines, for example, each vortex contributes 
vorticity in real space to the three nearest neighbor mesh points in each direction (9 
total in 2D, 27 total in 3D) according to the coefftcients to the spline Iit given in 
(82b). Then an FFT of the x-space field is taken. In k-space the application of the 
factors S,(k) in each direction and the shape factor y”(k) as well as the Poisson 
solution for ii(k) are simple multiplicative operations. The procedure essentially is 
reversed to determine dx,/dt from ii(k). 

The rms errors in the approximations (82) are shown in Fig. 29 versus wave 
number [59 1. The effect of the errors shown at the higher wave numbers can be 
minimized by choosing a p(k) that is small for large k or equivalently a relative large 
core size u. One must, therefore, find a balance between decreasing the error due to 
the mesh (by increasing o) and decreasing the error of the vortex blob method (by 
decreasing a). Buneman [57] has demonstrated nearly complete insensitivity to the 
underlying mesh using cubic splines and y^(k) = exp(-3hzk2/n2). Wang [60] used this 
technique to study the dynamics of the two-dimensional mixing layer. 

D. Three-Dimensional Vortex-in-Cell Method 

Buneman et al. [ 6 1 ] have developed a vortex-in-cell method in three dimensions 
utilizing quadratic splines with vortex filaments to represent the vorticity field. From 
(48), with the distribution y the same for all filaments, we see that the transform of 
the vorticity field is given by 

G(k) = f(k) ,$, rj j eeik ri(‘3r) $! d<. (84) 

If each space curve is approximated by straight line segments between computational 
points denoted by rj,, (I = l,..., Nj) and the integration between each pair of points is 
accomplished by two-point Gauss-Legendre quadrature, we find 

d(k) = f(k) i rj 2 i(rj,, - rj,,- ,) 
j=l I=1 

X [exp(-zk r,;,) + exp(-zk r,:,)], (85) 
.a I I I , , 1 , , , , , 

.6 - 

2 _ 

P 
5 .4 - 

0 1114 7112 3nl4 II 
--k 

FIG. 29. Root-mean-square error in the spline interpolation of exp(ikx) 1591. 
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where r.i.0 = rj.Ni and the quadrature points ri, are defined by 

ri, = j[(l f 3’“) rj,, + (1 f +I’*) rj,,-,I. (86) 

At this point the computation proceeds as in two dimensions except that each Gauss 
quadrature point yields vector contributions to 27 neighbors in real space. The 
method approximates the pure Lagrangian scheme D of Section 3. 

Tests of the three-dimensional vortex-in-cell method have indicated only minimal 
grid effects and no numerical instabilities. For example, comparisons were made with 
a pure Lagrangian calculation of the propagation of a periodic system of ring vortices 
[61]. Due to the Cartesian placement of the image system of vortex rings the 
propagation speed is a function of azimuth. In Fig. 30 the vortex-in-cell results for a 
163 mesh are compared with those of the Lagrangian scheme to determine the error 
due to mesh effects. Only a small, high-frequency error (rms z 1 %) is noted. 

A number of applications are being studied [59,62]. In Fig. 3 1, for example, the 
vortex filaments are shown from a mixing-layer simulation with a single harmonic 

i- *------ -2 
x 

- WC METHOD 
--- GREEN’S FUNCTION METHOD 

I I I I J 
0 30 60 90 120 150 160 

8. deg 

FIG. 30. Velocity of translation versus the angle 0 around the ring for a periodic array of single 
vortex rings: r= 2.0. 
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initial disturbance in the spanwise and streamwise directions. The mesh is 323 with 
5 120 points in 160 filaments representing the mixing layer. Work is also under way 
to relax the requirement of periodicity in all three directions and to implement a 
remeshing scheme [62]. 

Finally we note that Hackney et al. [55] have proposed additional procedures to 
accommodate vortices with arbitrary core distributions. They call this the PPPM 
(paticle-particle/particle-mesh) method. The method is based on the observation that 
only nearby vortices can “see” the difference between the actual structure of a given 
vortex and the structure endowed upon the vortex by the vortex-in-cell method. A 
vortex-vortex correction must therefore be made between all vortices within a certain 
distance, O(h), of each other. Construction of a linked list of vortex labels facilitates 
the computation of these close interactions. 

5. SUMMARY AND CONCLUSIONS 

Vorticity moves with the local velocity in the inviscid motion of a fluid. If the flow 
is incompressible, knowledge of the vorticity distribution is sufficient to determine the 
velocity field. Vortex methods essentially represent a direct translation of these facts 
to a numerical algorithm for flow simulation. 

Vortex methods offer a number of advantages over the more traditional Eulerian 
schemes. But as might be expected each advantage seems to be offset by a 
corresponding disadvantage. It is the goal of the practitioner to exploit the advantages 
to the fullest possible extent while finding means of circumventing the disadvantages. 
Four advantages and their side effects are cited below: 

1. Because computational points are required only in the rotational parts of the 
flow, vortex methods use a minimal description of the flow field which is pleasing 
theoretically and requires only a relatively small number of storage locations. The 
three flow problems described in this paper provide good examples of this aspect of 
vortex methods. Other examples include flow simulations of aerodynamic bodies at 
high angle of attack, using only a few vortices but obtaining aerodynamic forces of 
sufficient accuracy for engineering purposes 1631. On the other hand, the number of 
operations per time step is roughly proportional to the square of the number of vortex 
elements or coordinates in the discretization, rapidly leading to excessive computation 
times as the number of elements is increased. 

2. The Lagrangian treatment eliminates the need to explicitly treat convective 
derivatives. Because of this, small-scale features can often be convected accurately 
with a relatively large time step and certain singular distributions in vorticity may be 
treated exactly by the method. The errors generated in representing smooth flows are 
not well understood, however, and the treatment of viscous effects can be 
troublesome. 

3. In turbulent fluid flows and in many high Reynolds number laminar flows. 
fine-scale structures may develop in an intermittent manner throughout the flow field. 
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Vortex methods can automatically allow such regions to develop by a local concen- 
tration of computational points. Due to limited resources, however, remeshing will 
often be required with all the concomitant difficulties and approximations. 

4. Boundary conditions at infinity may be treated exactly, and accurate 
outflow boundary conditions are available and easy to implement. On the other hand, 
no-slip conditions at a solid wall require much care. 

A number of proposals aimed at minimizing the disadvantages cited in items l-4 
above were presented and discussed in this paper. Comments, some definite and some 
speculative, can now be made about these proposals. With regard to the 
computational effort noted in item 1, vortex-in-cell methods can be used to improve 
dramatically the computational efficiency if a large number of vortex elements are 
required. In connection with the errors of vortex methods mentioned in item 2, recall 
that the spatial truncation error is not diffusive, as shown by the analysis in Section 2 
and the mixing-layer simulation. This property is useful in a number of applications, 
for example, in the model piston-cylinder problem of Ashurst 1641, in which the 
shear layers emanating from the valves are well represented. In other words, the 
nondiffusive nature of the error can be exploited. In addition, vortex methods with 
high-order spatial accuracy are possible, as discussed in Section 2. These schemes 
should be tested and extended to three dimensions. 

The contour dynamics method in two dimensions and the vortex filament method 
for three-dimensional flows use computational points to define space curves. 
Reference was made in item 3 to the negative aspects of remeshing these curves. On 
the positive side, it seems that there is a definite connection between the remeshing 
process and the cascade of turbulent energy to smaller scales and hence a connection 
to a meaningful subgrid model. Finally, it is noted that several alternatives of varying 
degrees of complexity and approximation exist for the treatment of the no-slip 
boundary condition and the subsequent mechanics of the boundary layer. Further 
numerical experimentation and analysis is needed to determine the efficacy of these 
alternatives. 
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